3,516 research outputs found

    Cylindrical shock model of the plasma pinch

    Get PDF
    Plasma pinch model representing imploding current sheet as impermeable cylindrical piston driving gasdynamic shock wav

    Ground-Based Gamma-Ray Astronomy at Energies Above 10 TeV: Searching for Galactic PeV Cosmic-Ray Accelerators

    Full text link
    The origin of Galactic CRs up the knee energy remains unanswered and provides strong motivation for the study of gamma-ray sources at energies above 10 TeV. We discuss recent results from ground-based gamma-ray Cherenkov imaging systems at these energies as well as future observational efforts in this direction. The exciting results of H.E.S.S. give clues as to the nature of Galactic CR accelerators, and suggest that there is a population of Galactic gamma-ray sources with emission extending beyond 10 TeV. A dedicated system of Cherenkov imaging telescopes optimised for higher energies appears to be a promising way to study the multi-TeV gamma-ray sky.Comment: Presented at the conference 'Physics At The End Of The Galactic Cosmic Ray Spectrum' Aspen (April 2005) see http://www.cosmic-ray.org/conf/index.html (8 pages, 6 figures

    Experimental approaches for 100 TeV gamma-ray astronomy

    Full text link
    The high energy end of gamma-ray source spectra might provide important clues regarding the nature of the processes involved in gamma-ray emission. Several galactic sources with hard emission spectra extending up to more than 30TeV have already been reported. Measurements around 100TeV and above should be an important goal for the next generation of high energy gamma-ray astronomy experiments. Here we present several techniques providing the required exposure (100 km^2.h). We focus our study on three Imaging Atmospheric Cherenkov Technique (IACT) based approaches: low elevation observations, large field of view telescopes, and large telescope arrays. We comment on the advantages and disadvantages of each approach and report simulation based estimates of their energy ranges and sensitivities.Comment: 3 pages 1 figure. Proceedings of TeV particle astrophysics 2, Madison, August 2006. http://www.icecube.wisc.edu/TeV/presentations/colin_poster.pd

    Constraints on the cosmic ray diffusion coefficient in the W28 region from gamma-ray observations

    Full text link
    GeV and TeV gamma rays have been detected from the supernova remnant W28 and its surroundings. Such emission correlates quite well with the position of dense and massive molecular clouds and thus it is often interpreted as the result of hadronic cosmic ray interactions in the dense gas. Constraints on the cosmic ray diffusion coefficient in the region can be obtained, under the assumption that the cosmic rays responsible for the gamma ray emission have been accelerated in the past at the supernova remnant shock, and subsequently escaped in the surrounding medium. In this scenario, gamma ray observations can be explained only if the diffusion coefficient in the region surrounding the supernova remnant is significantly suppressed with respect to the average galactic one.Comment: To appear in the proceedings of "Journ\'ees de la SF2A 2010" Marseille 21-24 June 2010, 4 pages, 4 figure

    ISM gas studies towards the TeV PWN HESS J1825-137 and northern region

    Full text link
    HESS J1825-137 is a pulsar wind nebula (PWN) whose TeV emission extends across ~1 deg. Its large asymmetric shape indicates that its progenitor supernova interacted with a molecular cloud located in the north of the PWN as detected by previous CO Galactic survey (e.g Lemiere, Terrier & Djannati-Ata\"i 2006). Here we provide a detailed picture of the ISM towards the region north of HESS J1825-137, with the analysis of the dense molecular gas from our 7mm and 12mm Mopra survey and the more diffuse molecular gas from the Nanten CO(1-0) and GRS 13^{13}CO(1-0) surveys. Our focus is the possible association between HESS J1825-137 and the unidentified TeV source to the north, HESS J1826-130. We report several dense molecular regions whose kinematic distance matched the dispersion measured distance of the pulsar. Among them, the dense molecular gas located at (RA, Dec)=(18.421h,-13.282∘^{\circ}) shows enhanced turbulence and we suggest that the velocity structure in this region may be explained by a cloud-cloud collision scenario. Furthermore, the presence of a Hα\alpha rim may be the first evidence of the progenitor SNR of the pulsar PSR J1826-1334 as the distance between the Hα\alpha rim and the TeV source matched with the predicted SNR radius RSNR_{\text{SNR}}~120 pc. From our ISM study, we identify a few plausible origins of the HESS J1826-130 emission, including the progenitor SNR of PSR J1826-1334 and the PWN G018.5-0.4 powered by PSR J1826-1256. A deeper TeV study however, is required to fully identify the origin of this mysterious TeV source.Comment: 19 figures, 27 pages, accepted by MNRA

    H.E.S.S. Observations of Shell Type SNR

    Get PDF

    Enter Nous : Galop

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-ps/1989/thumbnail.jp

    Chandra observations of the HII complex G5.89-0.39 and TeV gamma-ray source HESSJ1800-240B

    Full text link
    We present the results of our investigation, using a Chandra X-ray observation, into the stellar population of the massive star formation region G5.89-0.39, and its potential connection to the coincident TeV gamma-ray source HESSJ1800-240B. G5.89-0.39 comprises two separate HII regions G5.89-0.39A and G5.89-0.39B (an ultra-compact HII region). We identified 159 individual X-ray point sources in our observation using the source detection algorithm \texttt{wavdetect}. 35 X-ray sources are associated with the HII complex G5.89-0.39. The 35 X-ray sources represent an average unabsorbed luminosity (0.3-10\,keV) of ∼1030.5\sim10^{30.5}\,erg/s, typical of B7-B5 type stars. The potential ionising source of G5.89-0.39B known as Feldt's star is possibly identified in our observation with an unabsorbed X-ray luminosity suggestive of a B7-B5 star. The stacked energy spectra of these sources is well-fitted with a single thermal plasma APEC model with kT∼\sim5\,keV, and column density NH=2.6×1022_{\rm H}=2.6\times10^{22}\,cm−2^{-2} (AV∼10_{\rm V}\sim 10). The residual (source-subtracted) X-ray emission towards G5.89-0.39A and B is about 30\% and 25\% larger than their respective stacked source luminosities. Assuming this residual emission is from unresolved stellar sources, the total B-type-equivalent stellar content in G5.89-0.39A and B would be 75 stars, consistent with an earlier estimate of the total stellar mass of hot stars in G5.89-0.39. We have also looked at the variability of the 35 X-ray sources in G5.89-0.39. Ten of these sources are flagged as being variable. Further studies are needed to determine the exact causes of the variability, however the variability could point towards pre-main sequence stars. Such a stellar population could provide sufficient kinetic energy to account for a part of the GeV to TeV gamma-ray emission in the source HESSJ1800-240B.Comment: 34 pages, 9 figure
    • …
    corecore